
uLoBal: Enabling In-Network Load Balancing
for Arbitrary Internet Services on SDN

Alex F R Trajano∗, Marcial P Fernandez†
Universidade Estadual do Ceará

Fortaleza, Ceará, Brazil
Email: ∗alex.ferreira@uece.br, †marcial.fernandez@uece.br

Abstract—Today’s networks should support the increasing de-
mand required by large workloads generated by users who
consume several types of service over the Internet. However,
the users demand increases at a much higher rate than the
networks can evolve due to a number of constraints, including
economic reasons. Thus, it is a common practice to adopt load
balancing in order to use network resources more efficiently.
Although load balancers are an effective way of improving
current networks, most of the existing implementations are based
on hardware products and dedicated to specific types of services,
which is not a good alternative due to the highly dynamic
nature of the Internet. In order to address the nature of today’s
networks, the Software-Defined Networking (SDN) provides an
architecture that allows the network to be fully programmable,
opening the possibility of implementing such load balancing
mechanisms on top of a network controller that provides optimal
management of resources. This paper presents uLoBal, an SDN-
based load balancer that is able of performing flexible and
generic load balancing of arbitrary services through the use
of manageable forwarding algorithms that address most of the
service types and natures. uLoBal is efficient to load balance
services on unstructured networks by considering both network
and servers’ load metrics. The proposal was evaluated in the
Mininet emulation environment and shows an improvement on
load balancing, providing better use of network resources and
user experience.

Keywords–Load Balancing; Software-Defined Networking; In-
ternet Services.

I. INTRODUCTION

The growing complexity and workload of current computer
networks often require large infrastructure investments in order
to support new demands. However, it is not feasible to increase
the network capacity at the same rate as the demand grows,
requiring a set of techniques that aim at a more efficient use
of network resources. One of the most-used techniques is to
perform load balancing, either by application layer algorithms
or network orchestration, in order to optimize network traffic.

In fact, over the last years, it has been common to find
specialized hardware appliances or applications capable of
performing traffic load balancing of specific types of service.
However, the load balancing task should not be coupled with
specialized infrastructure items, since it should be an embed-
ded feature of the network itself. This approach, called in-
network load balancing, is a way of providing more flexibility
and near optimal performance, since it would not be needed
to communicate with external devices for choosing to which
network path a given packet should be forwarded. Besides,
there is a wide set of Internet services that can be boosted
using an in-network load balancing technique, which opens

the opportunity for developing generic solutions focused on
the adherence to current and future services at no cost.

The programmable network concept is coming back thanks
to Software-Defined Network (SDN) architecture. SDN is an
emerging approach that aims to provide a dynamic, man-
ageable and adaptable platform that is ideal for the nature
of current networks and applications. To do so, it decouples
the network control from the data plane, enabling the net-
work control to be fully programmable while the underlying
infrastructure becomes specialized on data forwarding. The
SDN architecture provides a networking environment that is
centrally managed by a SDN controller, which is directly
programmable, bringing more agility to business process due
to the existence of a single point of control. Furthermore, the
SDN architecture aims to be vendor-neutral and based on open
standards, like the OpenFlow protocol, which is the main SDN
technology at the moment.

This paper presents uLoBal, a SDN-based load balancer
that is capable of performing flexible and generic load balanc-
ing of arbitrary services through the use of different forwarding
approaches that address most types of service. uLoBal allows
network administrators to manage which services are going to
be load balanced and which algorithms will define how such
process should occur. uLoBal supports the use of static and
dynamic load balancing schemes, working on top of the SDN
controller, helping to reduce the load on both the network and
the server.

In the last few years, there has been some interest in
implementing load balancing functions over SDN, but there
has not been much interest in addressing multiple arbitrary
services at a single point of management. While some works
have focused on specific applications [1], others focused on
particular network topologies [2] and others have scalability
problems that may lead production networks to collapse [3].
uLoBal tries to gather the best characteristics of each previ-
ously proposed solution while providing a novel and efficient
load balancing method.

uLoBal has been implemented and tested on the Mininet
virtualized environment that emulates a real-world network [4].
The testing scenario was based on a Content Delivery Network
(CDN), which is one of the most common types of service that
is present on the current Internet.

This work is organized as follows. In Section II, we present
some related works, while the basis of SDN and OpenFlow are
shown in Section III. In Section IV, we present the uLoBal, the
load balancing solution proposal. Sections V and VI show the
experimental evaluation and the results. Section VII concludes
the paper and presents some intended future works.

62Copyright (c) IARIA, 2016. ISBN: 978-1-61208-450-3

ICN 2016 : The Fifteenth International Conference on Networks (includes SOFTNETWORKING 2016)

 75 / 146

II. RELATED WORK
Li et al. [2] have proposed an OpenFlow-based load

balancer for Fat-Tree networks that supports multipath for-
warding. Their proposal aims to recursively find the current
best path from a source to a destination, load balancing the
network by enabling the use of alternate paths at runtime,
minimizing network congestion. Their algorithm works only
on networks that operate on the Fat-Tree topology and use
network metrics for choosing the best path.

Wang et al. [5] have proposed an interesting load balancing
approach that aims to proactively load balance traffic from
clients to servers by slicing the IP address space into trees
that isolate a set of clients to a set of servers. The work
uses the concept of server weighting, which assigns a fixed
number of clients to a server on the network. To do so, the
extensive use of wildcards is proposed, which may reduce
forwarding performance and create management issues, as can
be seen in [6]. Furthermore, the proposed solution requires
that, under certain conditions (network topology changes or
server weight updates), a part of the network traffic passes
through the controller, what may lead to the collapse of the
network controller. Network metrics are not considered.

Koerner et al. [3] proposed an architecture that enables in-
network load balancing of multiple services using OpenFlow.
Their proposal relies on a set of SDN controllers on top of
a FlowVisor instance [7], where each controller is responsible
for load balancing the traffic of a specific service. The authors
have focused on the architecture, so there is no information
about particular service implementation, while the performed
experiment does not fit real-world scenarios. The idea of using
a set of controllers to handle exact services might be interesting
in some specific cases, but has the drawback of not permitting
multiple services to be handled by a single controller, which
is the most common case of SDN deployment.

Handigol et al. [1] show Plug-n-Serve, a module that
resides within an OpenFlow controller that is capable of
performing load balancing over unstructured networks, aiming
to minimize average response time of HTTP servers. Plug-n-
Serve load balances HTTP requests by gathering metrics about
CPU consumption and network congestion on the network
links, which enables its load balancing algorithm to select the
appropriate server to direct requests to, while controlling the
path taken by packets on the network.

III. SDN AND OPENFLOW OVERVIEW
Software-Defined Network (SDN) is an approach to net-

work control and management that allows administrators to
manage network services by an abstraction of lower network
protocol functions. This is done by decoupling the control
plane, that takes decisions about forwarding traffic through the
network infrastructure; from the data plane, the network traffic
itself. The objective is to simplify the network control in high
speed traffic. SDN requires a protocol for the control plane that
is able to communicate with devices. The most known protocol
is the OpenFlow, often misunderstood to be equivalent to SDN,
but other protocols could also be used, such as Forwarding
and Control Element Separation (ForCES) [8] and Network
Configuration Protocol (NETCONF) [9]. In our work, we will
consider only the OpenFlow architecture.

OpenFlow has two main components: the controller, an
unique programmable remote control, and the network devices.
These two components work together through the OpenFlow

Protocol. The main idea is to keep network devices as simple as
possible in order to reach better forwarding performance, hav-
ing no complex decision-making process within the devices,
delegating such a task to the network controller.

The OpenFlow Controller is the centralized controller of an
OpenFlow network. It sets up all OpenFlow devices, maintains
topology information, and monitors the overall status of the
entire network. The OpenFlow Device is any OpenFlow-
enabled device in a network, such as a switch, router or access
point. Each device maintains a Flow Table that indicates the
processing applied to any packet of a certain flow. The Open-
Flow Protocol works as an interface between the controller and
the switches setting up the Flow Table. The controller updates
the Flow Table by adding and removing Flow Entries using
the OpenFlow Protocol. The Flow Table is a database that
contains Flow Entries associated with actions to command the
switch to apply some actions on a certain flow. Some possible
actions are: forward, drop and encapsulate. Figure 1 shows the
structure of a Flow Entry.

Figure 1. The OpenFlow Flow Entry [10].

Each OpenFlow device has a Flow Table with flow entries.
A Flow Entry has three fields: Rule, Action and Stats. The Rule
field is used to define the set of conditions to characterize the
packets that will match that specific flow. The Action field
defines the set of actions that must be applied to a packet if
it matches the conditions defined in the Rule field. The Stats
maintains a set of counters that are used to monitor flow’s
statistics, which can be used for management purposes. Each
incoming packet is matched against the entries of the Flow
Table. If a set of Flow Entries matches that packet, the device
will select the entry with the highest priority, and the actions
will be executed, having its statistics updated at the end of
the process. If there is no matching entry for an incoming
packet, the device sends a PacketIn message to the controller,
wrapping the unmatched packet.

Once the controller receives a PacketIn message, it can take
some actions on that packet, such as send FlowMod messages
to the network devices in order to install new flow entries
that match the incoming packet, or send a PacketOut message
to "manually" forward the packet, or even ignore that packet.
Besides, the controller can send messages to query statistics
on every OpenFlow-enabled device within its network. An
example is the StatsRequest message, which aims to query
flow, port or queue statistics on the devices, which can be
useful for determining the current state of the network. Each
StatsRequest message is sent asynchronously, so the controller

63Copyright (c) IARIA, 2016. ISBN: 978-1-61208-450-3

ICN 2016 : The Fifteenth International Conference on Networks (includes SOFTNETWORKING 2016)

 76 / 146

must listen for a StatsResponse message that will gather the
requested statistics’ data.

IV. ULOBAL: ENABLING LOAD BALANCING ON SDN
The uLoBal architecture was designed to provide high

flexibility and to fit multiple and diverse scenarios and needs.
As described previously, it is essential that an in-network
load balancer can address different types of service, not being
focused on specific scenarios. The uLoBal follows such design
directive and aims to identify a set of servers of a service
using a unique identifier that will set the load balancing
mode for that service. Furthermore, the uLoBal needs to be
aware of network statistics in order to enable a load balanced
forwarding, allowing a more efficient use of network resources.

To this extent, uLoBal has three main modules: (1) the
network monitoring module; (2) the load balancing module;
(3) the management module, a Representational State Transfer
(REST) Application Programming Interface (API) that allows
management by the network administrator and integration with
other monitoring tools. All these components are embedded
on the SDN controller in order to avoid unnecessary com-
munication with external services. Figure 2 shows how these
components are connected.

Figure 2. uLoBal architectural modules integration.

In an environment where there is a set of services that
can be accessed through multiple endpoints, it is possible to
perform in-network load balance in order to allow an even
distribution of requests. The main objective behind uLoBal is
to enable such service load balancing yet performing network
load balancing. In networks where there are multiple paths
between clients and endpoints, it is possible to use alternate
paths as the network workload grows, mitigating problems
related to networking congestion and reducing end-to-end
latency. uLoBal can load balance the servers of the services by
algorithms that use static and dynamic approaches that account
for recent load information on both servers and network.
Further subsections will give detailed information about each
module.

A. Management Module
The uLoBal Management API can be accessed through a

REST service, in order to allow administration and integration
with external systems that can give updated load information
of the services’ servers. As the SDN controller cannot perform
complex load monitoring at the servers, it is necessary to
expose such service in order to allow an external monitoring
tool to provide such information to the load balancer. Table I
shows the uLoBal API methods.

The uLoBal uses a tuple of three values to identify an
endpoint (or server) of a service: the ServiceId, IP address and

TABLE I. uLoBal API methods and parameters

method parameters used by

1 insertServiceEndpoint (ServiceId, IP, Port) Network Admin
2 deleteServiceEndpoint (ServiceId, IP, Port) Network Admin
3 updateServerLoad (ServiceId, IP, Port, Load) Monitoring System
4 changeLBMode (ServiceId, Mode) Network Admin

transport port values. The ServiceId value is any string that
uniquely identifies the provided service on a set of servers,
being each server identified by the IP address and transport
port values. Any kind of service that uses the TCP or UDP
protocols can be addressed using these values if all of its
endpoints are accessed on the same transport port, which is the
most common case. Methods 1 and 2 of the API use exactly
this tuple in order to add or remove endpoints to/from the
load balancing. Method 3 is used by an external monitoring
system that updates the load information of each server that
provides access to the service, being the Load value the
last load measure of a server normalized within the interval
[0, 10]. The Load is a generic value that can be calculated
using any application’s specific metric. In order to allow the
network administrator to change the load balancing mode that
must be used for a given ServiceId, the Mode value must
be provided to method 4 using one of three possible values:
ServerRoundRobin, ServerIpHash or NetServerLoad, making
the load balancer to change the balancing algorithm.

B. Network Monitoring Module
Since uLoBal uses network load information in order to

load balance the service traffic on multiple forwarding paths,
it is necessary to account for such load data to perform the load
balancing. The network monitoring consists of two steps: (1)
collect statistics on every port of every switch of the SDN at
predefined time intervals; (2) calculate the minimum spanning
tree of the network graph using the collected statistics as the
cost metric.

The collecting process is made through the use of StatsRe-
quest messages sent from the SDN controller to all switches
on the network. Adrichem et al. describe a similar process
in [11]. When the load statistics are collected, the Dijkstra
algorithm is used to compute the minimum spanning tree that
will be internally cached to be queried by the load balancing
component. The cost metric used to compute the tree is given
by LinkCost = b+ e, where b is the percentage of the used
link’s bandwidth and e is the percentage of packets that have
suffered of either drops or transmission errors. The LinkCost
must be normalized within the interval [0, 10] before the
spanning tree is calculated.

C. Load Balancer Module
The uLoBal load balancer module is responsible for load

balancing requests based on three operational modes: Round-
Robin (RR), IP Hashing (IPH), and Network and Server Load
(NSL). Each one is identified in the REST API by Server-
RoundRobin, ServerIpHash and NetServerLoad, respectively.

The load balancing mechanism is based on the principle
of SDN, where the controller can push flows on the switches
when there is no matching flows for an arriving packet. At this
moment the controller receives a PacketIn message, that will be
handled by the load balancer module if the destination IP and

64Copyright (c) IARIA, 2016. ISBN: 978-1-61208-450-3

ICN 2016 : The Fifteenth International Conference on Networks (includes SOFTNETWORKING 2016)

 77 / 146

port match some previously inserted endpoint. The handling
algorithm will depend on the configured load balancing mode
for the matching ServiceId, with the NSL mode as the default
mode. Algorithm 1 shows how the PacketIn message is handled
by the controller.

Algorithm 1: PacketIn handling algorithm
Data: A PacketIn message

1 if Packet’s destination IP and port belongs to any ServiceId then
2 sId := get the matching ServiceId; lbMode := get the

configured load balancing mode for sId;
3 switch lbMode do
4 case ServerRoundRobin
5 call RR(PacketIn, sId);
6 end
7 case ServerIpHash
8 call IPH(PacketIn, sId);
9 end

10 case NetServerLoad
11 call NSL(PacketIn, sId);
12 end
13 endsw
14 Send the packet on a PacketOut message;
15 end
16 else
17 Ignore the packet, not interfering the normal processing;
18 end

The uLoBal provides two approaches for load balancing
service requests. The first is static, an approach that does not
consider either network or server metrics in order to make
decisions to where forward incoming traffic, while the second
approach is dynamic and uses this metrics in order to make
traffic orchestration. The static approach has the advantage of
less overhead since there is no need to be aware of such
metrics, which may be useful for networks where there is
little congestion and to services that need some predictability
about which server will handle a given request. On the other
hand, the dynamic approach enables better network traffic
orchestration, using resources according to their most up-to-
date metric information, which can help to reduce network
congestion and, consequently, improve the users Quality of
Experience (QoE). Algorithms 2 and 3 use the static approach,
while the Algorithm 4 uses the dynamic approach.

Algorithm 2: RR algorithm
Data: A PacketIn message and the sId

1 Increment the RR packet counter for the given sId;
2 pktC := the RR packet counter for the given sId;
3 sLen := get the amount of servers that belongs to sId;
4 sIndex := pktC mod sLen;
5 From the list of servers of sId, get the server dstSrv stored at

the sIndex position;
6 Get the less costly network path from the packet’s source to
dstSrv and send FlowMod messages to the switches on the
path;

Algorithm 2 is a basic function that simply forwards
requests by choosing the destination server through the Round-
Robin algorithm. Once it chooses the server, it gets the cheap-
est current network path from the source to the destination
in order to load balance the network. Its main characteristic is
that the servers constantly receive a similar amount of requests,
which can be useful for services that the costs of the requests
are always the same.

Algorithm 3: IPH algorithm
Data: A PacketIn message and the sId

1 Create a circular list srvCirLst;
2 foreach server srv that belongs to sId do
3 Calculate the hash h of the srv IP;
4 Insert h into srvCirLst;
5 end
6 Get the packet’s source IP and calculate its hash srcH;
7 Insert srcH into srvCirLst and get its index srcIdx;
8 Get the server dstSrv whose hash is stored at the srcIdx+ 1

position on srvCirLst;
9 Get the less costly network path from the packet’s source to
dstSrv and send FlowMod messages to the switches on the
path;

Algorithm 3 aims to map a set of clients to the same
endpoint following a Consistent Hashing approach [12]. The
main goal is to always forward requests made by a user to the
same endpoint, which may be useful for services that need to
fetch context information before serving the request, since this
context information can be locally cached.

Algorithm 4: NSL algorithm
Data: A PacketIn message and the sId

1 Create a Hash Map cstMap capable of storing multiple values
mapped by a single key;

2 foreach server srv that belongs to sId do
3 Get the less costly network path nPth from the packet’s

source to srv;
4 netCst := the cost of nPth;
5 srvCst := the current srv cost value;
6 cost := 2

√
netCst× srvCst;

7 Insert the nPth on cstMap mapped by cost;
8 end
9 Get the minimum key k from cstMap;

10 Get a random entry nPth mapped by k;
11 Send FlowMod messages to the switches on the path nPth;

Algorithm 4 was designed for considering the current
network and server loads in order to choose the destination
server. It works by selecting the endpoint that can be accessed
with the minimum cost, being the cost calculated through
the geometric mean of both server and network costs. As a
dynamic approach, it is not easy to predict which requests
are going to reach a determined server, since it will depend
exclusively on the current load from both servers and network.

Note that Algorithms 2, 3 and 4 send FlowMod messages
to the switches within the network path from the source to
the selected endpoint. Each FlowMod message consists of a
header that matches the packet and two actions, (1) rewrite the
packet’s destination/source address; and (2) send the packet to
the next hop. Furthermore, note that even though Algorithms
2 and 3 perform a static server load balancing, the chosen
network path remains dynamic, since the selection process
is based on the network metrics collected by the monitoring
module. The flows generated by uLoBal use a soft timeout
approach in order to set the duration of flows on switches,
configuring the inactivity timeout to 5 seconds.

V. EVALUATION
In order to evaluate how the load balancer would behave in

production networks, two scenarios were elaborated to evaluate
the effectiveness of the proposal and give some insights about
further deployment.

65Copyright (c) IARIA, 2016. ISBN: 978-1-61208-450-3

ICN 2016 : The Fifteenth International Conference on Networks (includes SOFTNETWORKING 2016)

 78 / 146

The first scenario aims to compare how the network load
balancing approach affects the clients perceived delay when
requesting some content on a CDN server that operates through
HTTP. This scenario aims to evaluate only the network load
balancing by avoiding the server load balancing, allowing
better analysis of the proposal behavior. To this extent, the
network topology has only a single server that is accessed by
several clients spread over the network. Since there is a single
server, all the requests are forwarded to a single point of the
network, making the load balancer change the forwarding paths
at runtime, balancing the traffic load. For comparability, the
experiment has addressed the use of the proposed load balancer
operating on the NSL mode and the use of a traditional Shortest
Path First (SPF) approach.

The second scenario aims to compare how the different
load balancing modes affect (1) the client perceived latency
and (2) the server load. Again, the clients are going to request
contents on CDN servers that operate through HTTP. In this
scenario, we used three CDN servers, each one providing an
endpoint for content delivery, making the load balancer for-
ward requests to one of these servers, following the configured
load balancing mode.

The evaluation environment was based on a virtualized
network using Mininet [4]. The Mininet system permits the
specification of a network interconnecting virtualized devices.
Each network device, hosts, switch and controller are vir-
tualized and communicate via Mininet. A Python script is
used to create the topology in Mininet, and the traffic flow
control is made by the OpenFlow controller. Therefore, the
test environment implements and performs the actual protocol
stacks that communicate with each other virtually. The Mininet
environment allows the execution of real protocols in a virtual
network. The possibility to set link bandwidth and delay in
Mininet allowed us to perform an experiment similar to an
actual real scenario. The chosen OpenFlow controller was
the Floodlight [13], due to its simplicity and development
flexibility.

Figure 3. Network Topology. http://c-bgp.sourceforge.net/tutorial.php

Figure 3 shows the Abilene network topology, which has
been used to perform the experiments on top of Mininet. The
topology’s sources were obtained from the TopologyZoo [14]
and parsed according to the method described by [15]. In the
first scenario, the server was positioned at the network node
represented by the Indianapolis city. In the second scenario,

the servers were positioned at the New York, Washington and
Sunnyvale cities. Neither link latency nor bandwidth has been
modified in the experiments.

In each city that did not contain any CDN endpoint, a set of
10 clients has been placed in order to make content requests.
Each client was configured to perform sequential requests to
a randomly chosen server from the available servers of the
experiment. Of course, it is the job of the load balancer to
redirect the request to the proper server, following the load
balancing mode.

VI. RESULTS

After each client finished 106 requests, the experiments
results were collected and the graphs in Figures 4, 5 and 6
were built.

Figure 4. Results of the first experiment.

Figure 4 shows the results for the first experiment, where
the network load balancing was compared to a SPF approach.
It is possible that at low workloads, these approaches did
not show significant differences, suggesting that the proposed
network load balancing scheme is not relevant. However, when
the workload starts to grow, there is an improvement in order of
tens of milliseconds on the clients perceived delay, suggesting
that this network load balancing approach can be useful as
the workload grows. Besides, it is possible to conclude that
at high workloads, the network would benefit form such load
balancing mechanism, since congested paths would be avoided.

Figure 5. Results of the second experiment, from the point of view of the
clients perceived delay.

66Copyright (c) IARIA, 2016. ISBN: 978-1-61208-450-3

ICN 2016 : The Fifteenth International Conference on Networks (includes SOFTNETWORKING 2016)

 79 / 146

Figure 5 shows the results for the second experiment,
where the load balancing modes can be compared with each
other. Both RR and IPH have similar behaviors at different
workloads, although the RR shows better latency results. Such
results can be explained by the fact that the network nodes are
spread over an area of a whole country, with the servers being
positioned at the edges of the network, which makes the use of
these techniques a bad idea due to the high distance, increasing
the end-to-end delay. It is possible to notice that the NSL mode
outperforms both RR and IPH modes, which can be explained
by the use of both server and network metrics when deciding
to which server the requests will be forwarded, considering
always the less costly network path at the moment. When the
responses’ sizes were 1600 KB, the improvement was about
53% and 62%, compared to RR and IPH modes, respectively.

Figure 6. Results of the second experiment, from the point of view of the
servers average load.

Figure 6 shows the results for the second experiment,
where the average servers’ load can be compared according
to the load balancing mode. Again, both RR and IPH modes
are similar to different workloads, unless the responses’ sizes
were 1600 KB. This result was expected, since these load
balancing schemas aim to distribute the requests evenly across
the servers, not looking for any external factor on the decision-
making process. For this reason, it is also possible to notice
that NSL can alleviate the average server load in most of the
workloads, suggesting that the proposed load balancer can be
useful in different production networks with distinct workloads
when configured to operate in this mode. Furthermore, it was
not observed any significant change in the consumption of
resources in the network controller, even when using the NSL
mode, suggesting that uLoBal follows the same scalability
levels of the network controller.

VII. CONCLUSION AND FUTURE WORK
This paper has presented uLoBal, a SDN-based load bal-

ancer that is capable to load balance arbitrary services through
the use of different forwarding approaches that address services
of several types and nature. The work showed that uLoBal
works by aggregating a set of servers that defines the services’
endpoints, allowing the network administrator to enable the
load balancing of requests through the use of three different
load balancing modes. Besides, uLoBal supports the use of
static and dynamic load balancing, making it adaptable to
different types of service. Experimental results showed that
the network load balancing performs better when compared to

classic network forwarding, while enabling load balancing at
the servers of distributed services.

As a future work we intend to aggregate more load
balancing modes on the current implementation of uLoBal,
while optimizing the existing algorithms to provide even
better performance. Since uLoBal can work over unstructured
networks, it is needed to verify how the network topology can
affect the performance of each load balancing mode, which
can give important insights about the positioning of servers on
the network according to the type of service.

REFERENCES
[1] N. Handigol, S. Seetharaman, M. Flajslik, N. McKeown, and R. Jo-

hari, “Plug-n-serve: Load-balancing web traffic using openflow,” ACM
SIGCOMM Demo, vol. 4, no. 5, 2009, p. 6.

[2] Y. Li and D. Pan, “Openflow based load balancing for fat-tree networks
with multipath support,” in Proc. 12th IEEE International Conference
on Communications (ICC’13), Budapest, Hungary, 2013, pp. 1–5.

[3] M. Koerner and O. Kao, “Multiple service load-balancing with open-
flow,” in IEEE 13th International Conference on High Performance
Switching and Routing (HPSR2012). IEEE, 2012, pp. 210–214.

[4] B. Lantz and B. Heller, “Mininet: rapid prototyping for Software
Defined Networks,” Last accessed, Aug 2015. [Online]. Available:
http://yuba.stanford.edu/foswiki/bin/view/OpenFlow/Mininet

[5] R. Wang, D. Butnariu, J. Rexford et al., “Openflow-based server load
balancing gone wild,” in Workshop on Hot Topics in Management of
Internet, Cloud, and Enterprise Networks and Services (Hot-ICE 2011,
2011.

[6] B. Lopes Alcantara Batista, G. Lima de Campos, and M. Fernandez,
“Flow-based conflict detection in openflow networks using first-order
logic,” in Computers and Communication (ISCC), 2014 IEEE Sympo-
sium on, June 2014, pp. 1–6.

[7] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado, N. McK-
eown, and G. Parulkar, “Flowvisor: A network virtualization layer,”
OpenFlow Switch Consortium, Tech. Rep, 2009.

[8] A. Doria, J. H. Salim, R. Haas, H. Khosravi, W. Wang, L. Dong,
R. Gopal, and J. Halpern, “Forwarding and Control Element Separation
(ForCES) Protocol Specification,” RFC 5810 (Proposed Standard),
Internet Engineering Task Force, Mar. 2010. [Online]. Available:
http://www.ietf.org/rfc/rfc5810.txt

[9] R. Enns, M. Bjorklund, J. Schoenwaelder, and A. Bierman, “Network
Configuration Protocol (NETCONF),” RFC 6241 (Proposed Standard),
Internet Engineering Task Force, Jun. 2011. [Online]. Available:
http://www.ietf.org/rfc/rfc6241.txt

[10] Open Networking Foundation, “Openflow switch specification,
version 1.3.5,” Last accessed, Sep 2015. [Online]. Avail-
able: https://www.opennetworking.org/images/stories/downloads/sdn-
resources/onf-specifications/openflow/openflow-switch-v1.3.5.pdf

[11] N. L. Van Adrichem, C. Doerr, F. Kuipers et al., “Opennetmon: Net-
work monitoring in openflow software-defined networks,” in Network
Operations and Management Symposium (NOMS), 2014 IEEE. IEEE,
2014, pp. 1–8.

[12] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and
D. Lewin, “Consistent hashing and random trees: Distributed caching
protocols for relieving hot spots on the world wide web,” in Proceedings
of the twenty-ninth annual ACM symposium on Theory of computing.
ACM, 1997, pp. 654–663.

[13] D. Erickson, “Floodlight Java based OpenFlow Con-
troller,” Last accessed, Aug 2015. [Online]. Available:
http://floodlight.openflowhub.org/

[14] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
“The internet topology zoo,” Selected Areas in Communications, IEEE
Journal on, vol. 29, no. 9, 2011, pp. 1765–1775.

[15] M. Großmann and S. J. Schuberth, “Auto-Mininet: Assessing the
Internet Topology Zoo in a Software-Defined Network Emulator,” Otto-
Friedrich University, Tech. Rep., 2013.

67Copyright (c) IARIA, 2016. ISBN: 978-1-61208-450-3

ICN 2016 : The Fifteenth International Conference on Networks (includes SOFTNETWORKING 2016)

 80 / 146

